30-01-2015, 09:44 PM
Some important other facts about GT, I'm just in amazement of this study tbh, I mean who knew green tea had this much potential. Imo it was a minor supplement, and it had no real NBE value.
EGCG-activated eNOS pathways that improve cardiovascular function and anti-cancer effect in the presence of PDE5 inhibitor
Intracellular signaling pathways
In cell culture, the majority of [3H]–EGCG is found in the cytosolic fraction [34]. This suggests that biological actions of EGCG may occur through EGCG metabolites or interaction with intracellular molecules. As mentioned above, EGCG produces low level reactive oxygen species, including hydrogen peroxide that may act as a second messenger for downstream signaling pathways [23], [36], [64], [97] and [121]. This action may be mediated by direct chemical reactions of EGCG with compounds at the cell surface. However, additional unknown receptor-mediated signaling pathways cannot be excluded. EGCG also increases other intracellular second messengers including Ca2+, cAMP, and cGMP.
DNA methylation
EGCG has epigenetic functions in chromosomes [25]. Aberrant methylation on CpG islands cause gene silencing that leads to altered cellular physiology and cell proliferation. EGCG inhibits DNA methyltransferase (DNMT) which reverses methylation-induced gene silencing by directly binding to DNMT with an IC50 of less than 1 μM EGCG [26]. This suggests that EGCG is transported to the nucleus. Although this function of EGCG has been known for a decade, the specific genes affected by this mechanism are not well defined and this area requires further investigation.
Recent molecular, cellular, and animal studies have begun to reveal detailed mechanisms linking drinking green tea and life-style adjustment with prevention of chronic diseases including cancer, diabetes, and cardiovascular disorders. Furthermore, chemical modification of an EGCG pharmacophore may modify relative therapeutic activities so that combinatorial supplementation may synergistically enhance beneficial health effects [8] and [30].
EGCG-activated eNOS pathways that improve cardiovascular function and anti-cancer effect in the presence of PDE5 inhibitor
Intracellular signaling pathways
In cell culture, the majority of [3H]–EGCG is found in the cytosolic fraction [34]. This suggests that biological actions of EGCG may occur through EGCG metabolites or interaction with intracellular molecules. As mentioned above, EGCG produces low level reactive oxygen species, including hydrogen peroxide that may act as a second messenger for downstream signaling pathways [23], [36], [64], [97] and [121]. This action may be mediated by direct chemical reactions of EGCG with compounds at the cell surface. However, additional unknown receptor-mediated signaling pathways cannot be excluded. EGCG also increases other intracellular second messengers including Ca2+, cAMP, and cGMP.
DNA methylation
EGCG has epigenetic functions in chromosomes [25]. Aberrant methylation on CpG islands cause gene silencing that leads to altered cellular physiology and cell proliferation. EGCG inhibits DNA methyltransferase (DNMT) which reverses methylation-induced gene silencing by directly binding to DNMT with an IC50 of less than 1 μM EGCG [26]. This suggests that EGCG is transported to the nucleus. Although this function of EGCG has been known for a decade, the specific genes affected by this mechanism are not well defined and this area requires further investigation.
Recent molecular, cellular, and animal studies have begun to reveal detailed mechanisms linking drinking green tea and life-style adjustment with prevention of chronic diseases including cancer, diabetes, and cardiovascular disorders. Furthermore, chemical modification of an EGCG pharmacophore may modify relative therapeutic activities so that combinatorial supplementation may synergistically enhance beneficial health effects [8] and [30].